

CFM300S Series Application Note V12 August 2020

300W AC-DC Power Supply with PFC CFM300S Series APPLICATION NOTE

Approved By:

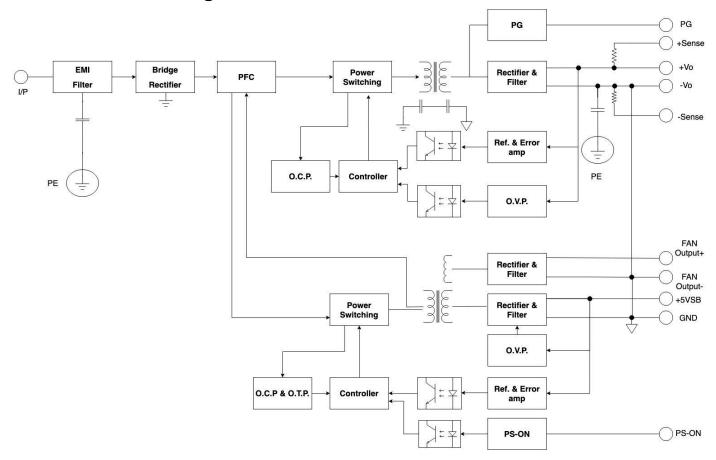
Department	Approved By	Checked By	Written By
Research and Development Department	Enoch	Yang Ovid	Wei-Cheng
Quality Assurance Department	Ryan	Benny	

Application Note V12 August 2020

Content

1. INTRODUCTION 2. CFM300S SERIES CONVERTER FEATURES	3 3
3. ELECTRICAL BLOCK DIAGRAM	3
4. TECHNICAL SPECIFICATIONS	4
5. MAIN FEATURES AND FUNCTIONS	7
5.1 Operating Temperature Range	7
5.2 Output Protection (Over Current Protection)	7
6. EMC & SAFETY	7
7. APPLICATIONS	7
7.1 Power De-Rating Curve	7
7.2 Test Set-Up	8
7.3 Output Ripple and Noise Measurement	8
7.4 Installation Instruction	8
7.5. PS On/Off Remote Control	10
7.6. Output Remote Sensing	11
8. PART NUMBER	11
9. MECHANICAL OUTLINE DIAGRAMS AND PACKING INFORMATION 9.1. Mechanical Outline Diagrams	12
9.2. Packing Information	13

Application Note V12 August 2020


1. Introduction

This application note describes the features and functions of Cincon's CFM300S series of open frame, switching AC-DC power module. These are highly efficient, reliable, compact, high power density, single output AC/DC power modules. The module is fully protected against short circuit and over-voltage conditions. Cincon's world class automated manufacturing methods, together with an extensive testing and qualification program, ensure that the CFM300S series power module is extremely reliable.

2. CFM300S Series Features

- Universal Input Range 90~264Vac
- Active PFC Meets EN61000-3-2 Class C&D
- High Efficiency up to 94%
- High Power Density up to 14.1W/Inch3
- Over Temperature Protection
- Continuous Short Circuit Protection
- Remote Voltage Sense
- PS On/Off Remote Control
- Power Good & Power Fail Signal
- +5V Stand-by Output Power
- 12V Fan Output
- No Load Power Consumption<0.3W
- 3"x 5" Size
- Meets EN55032 and EN55022 Class B
- IEC/EN/UL 62368-1 Approval
- Meets IEC/EN 60335-1
- Meets Class I

3. Electrical Block Diagram

CFM300S Series Application Note V12 August 2020

4. Technical Specifications

(All specifications are typical at nominal input, full load at 25°C unless otherwise noted.)

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units	
TANAMETER	NOTES and SONDITIONS	Device		Туріоаі			
Input Voltage (Continuous)		All	90		264	Vac	
			120		370	Vdc	
Operating Temperature	See derating curve	All	-40		+80	°C	
Storage Temperature		All	-40		+85	°C	
INPUT CHARACTE	RISTICS	·					
PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units	
Operating Voltage Range		All	100		240	Vac	
Input Frequency Range		All	47		63	Hz	
Maximum Input Current	100% Load, Vin=100Vac	All			4	Α	
Leakage Current		All			3.5	mA	
Inrush Current	Vin=240Vac, cold start at 25℃.	All			30	Α	
OUTPUT CHARACT	TERISTICS						
PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units	
		CFM300S120/120C	11.4	12	12.6		
Output Voltage Set Point	Vin=Nominal Vin, Io=Io .max, Tc=25℃.	CFM300S240/240C	22.8	24	25.2	Vdc	
		CFM300S360/360C	34.2	36	37.8		
		CFM300S480/480C	45.6	48	50.4		
		CFM300S120/120C			25		
0 " 0 ' 10 15		CFM300S240/240C			12.5		
Operating Output Current Range		CFM300S360/360C			8.34	Α	
		CFM300S480/480C			6.25		
Holdup Time	Vin=115Vac(typ.)	All		20		ms	
Output Voltage Regulation							
Load Regulation	10% load to full load	All			±1.0	%	
Line Regulation	Vin=high line to low line	All			±0.5	%	
Over Current Protection	Hiccup mode(Auto Recovery)	All	130	150	180	%	
		CFM300S120/120C		15			
Over Voltage Protection	Latch mode	CFM300S240/240C		30		Vdc	
Over voilage Protection	Laten mode	CFM300S360/360C		43			
		CFM300S480/480C		56			
Over Temperature Protection	The temperature of C37(Auto Recovery)	All			110	°C	
	1. Add a 0.1uF ceramic capacitor and a	CFM300S120/120C			120		
Output Ripple and Noise	10uF aluminum electrolytic capacitor to output.	CFM300S240/240C			150	mVp-p	
Output Ripple and Noise	2. Oscilolscope is 20MHz band width.	CFM300S360/360C			150		
	3. Ambient temperature=25°C	CFM300S480/480C			150		
		CFM300S120/120C			25000		
Load Canacitanas	1. Input voltage is 115VAC and 230VAC	CFM300S240/240C			12500	uF	
Load Capacitance	2. Output is max. load	CFM300S360/360C			5000	ur	
		CFM300S480/480C			3750		

Application Note V12 August 2020

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
		CFM300S120/120C		92.5		
	1. Input voltage is 230VAC	CFM300S240/240C		93.5		0/
Efficiency	2. Output is max. load	CFM300S360/360C		93.5		%
		CFM300S480/480C		94.0		
	Power on	0		2		
	Power off(PS-ON and GND open)	All	11		16	Vdc
PS-On Signal (see chapter 7.5)	Power on (PS-ON and GND short)		Source Current 4.5		A	
	Power-off(PS-ON and GND open)			0		mA
	1.Input voltage is 90VAC~264VAC					ms
Power Good(PG)	2. Output is max. load	All	50		250	
	3. The TTL goes high after power set up					
	1.Input voltage is 90VAC~264VAC		5		20	ms
Power Fail(PG)	2. Output is max. load	All				
	3. The TTL goes low before Vo below 90% rated value					
ISOLATION CHAR	ACTERISTICS					
PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
Input to Output	1 minute	All			3000	Vac
Input to Earth	1 minute	All			1500	Vac
Output to Earth	1 minute	All			500	Vac
Isolation Resistance		All	100			МΩ
FEATURE CHARA	CTERISTICS					
PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
Switching Frequency	Pout=max. rated power	All		70		KHz
Output Voltage adjustment	Pout=max. rated power	All	-5		+5	%

Application Note V12 August 2020

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units	
Humidity	Non-condensing	All			93	% RH	
Shock	Meets MIL-STD-810F Table 516.5, TABLE 516.5-1 10ms, each axis 3 times(+-X \ Y \ Z axis)		g				
Vibration	Meets MIL-STD-810F Table 514.5C-VIII, 15 ~ 2000Hz, X \ Y \ Z axis ,1 hr(each axis),. total 3 hrs.	eets MIL-STD-810F Table 514.5C-VIII, ~ 2000Hz, X · Y · Z axis ,1 hr(each All 4					
MTBF	lo=100%; Ta=25°C per MIL-HDBK-217F						
141 - 11		CFM300SXXX		420		hours	
Weight		CFM300SXXXC		550		g	
Safety	Class I, IEC/EN/UL 62368-1						
EMC Emission	EN55032, EN55022, EN61000-3-2, EN61000-3-3, FCC CFR 47 Part 15 Subpart B						
Conducted disturbance at main terminal	EN55032:2012+AC:2013, EN55022:2010+AC2011, Class B, FCC CFR 47 Part 15 Subpart B						
Radiated disturbance	EN55032:2012+AC:2013, EN55022:2010+AC2011, Class B, FCC CFR 47 Part 15 Subpart B						
Harmonic current emissions	EC 61000-3-2:2014, Class C & D						
Voltage fluctuations & flicker	IEC 61000-3-3:2013						
EMC Immunity	IEC61000-4-2,3,4,5,6,8,11						
Electrostatic discharge (ESD)	IEC 61000-4-2:2008, ±2kv, ±4kv, Criteria A						
Radio-frequency, Continuous radiated disturbance							
Electrical fast transient (EFT)	IEC 61000-4-4:2012, ±0.5kv, ±1kv, ±2kv, Criteria A						
Surge	IEC 61000-4-5:2005, L-N: ±0.5kv, ±1kv, L-PE, N-PE: ±0.5kv, ±1kv, ±2kv, Criteria A						
Conducted disturbances, induced by RF fields	IEC 61000-4-6:2013, Criteria A						
Power frequency magnetic field	IEC 61000-4-8:2009, Criteria A						
Voltage dips	IEC 61000-4-11: 2004, Dip: 30% reduction, Dip: 70% reduction, Criteria A						
Voltage interruptions	IEC 61000-4-11:2004, >95% reduction, Criteria B						

Application Note V12 August 2020

5. Main Features and Functions

5.1 Operating Temperature Range

The highly efficient design of Cincon's CFM300S series power modules has resulted in their ability to operate within ambient temperature environments from -40°C to 80°C. Due consideration must be given to the de-rating curves when ascertaining the maximum power that can be drawn from the module. The maximum power which can be drawn is influenced by a number of factors, such as

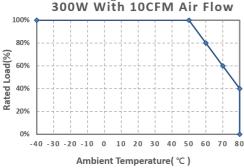
- Input voltage range
- Permissible Output load (per derating curve)
- Effective heat sinks

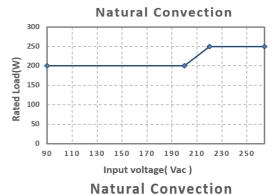
5.2 Output Protection (Over Current Protection)

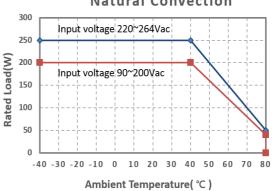
The power modules provide full continuous short-circuit protection. The unit will auto recover once the short circuit is removed. To provide protection in a fault condition, the unit is equipped with internal over-current protection. The unit will operate normally once the fault condition is removed. The power module will go to hiccup mode if the output current is set from 130% to 180% of rated current.

6. EMC & Safety

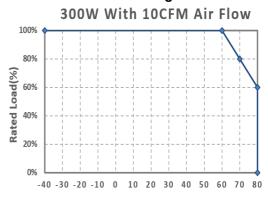
■ Emission and Immunity

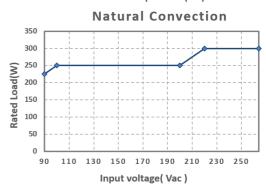

EN55032, EN55022, EN61000-3-2, EN61000-3-3, FCC CFR 47 Part 15 Subpart B, IEC61000-4-2, IEC61000-4-3, IEC61000-4-4, IEC61000-4-5, IEC61000-4-6, IEC61000-4-8, IEC61000-4-11


■ Safety
Class I, IEC/EN/UL 62368-1

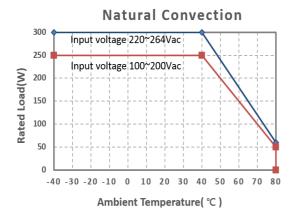

7. Applications

7.1 Power De-Rating Curve


CFM300S Series Derating Curve



CFM300SXXXC Series Derating Curve



Ambient Temperature(°C)

Application Note V12 August 2020

7.2 Test Set-Up

The basic test set-up to measure parameters such as efficiency and load regulation is shown in Figure 1. Wher testing the Cincon's CFM300S series under any transien conditions, please ensure that the transient response of the source is sufficient to power the equipment under test. We can calculate the

- Efficiency
- Load regulation and line regulation.

The value of efficiency is defined as:

$$\eta = \frac{Vo \times Io}{Pin} \times 100\%$$

Where:

Vo is output voltage

lo is output current

Pin is input power

The value of load regulation is defined as:

Load reg. =
$$\frac{V_{FL} - V_{NL}}{V_{NI}} \times 100\%$$

Where:

 V_{FL} is the output voltage at full load $\,$

V_{NL} is the output voltage at 10% load

The value of line regulation is defined as:

Line reg. =
$$\frac{V_{HL}-V_{LL}}{V_{LL}} \times 100\%$$

Where:

 V_{HL} is the output voltage of maximum input voltage at full load.

 V_{LL} is the output voltage of minimum input voltage at full load.

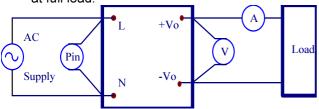


Figure 1. CFM300S Series Test Setup

7 3 Outnut Rinnle and Noise Measurement

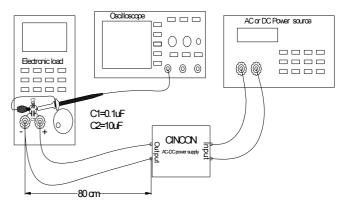
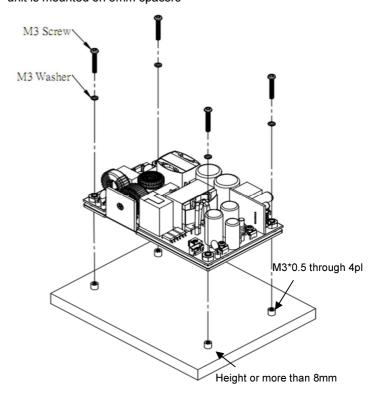
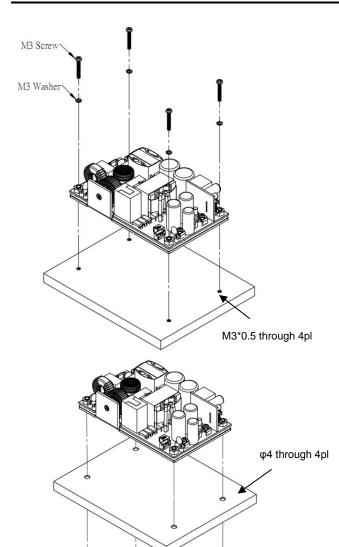
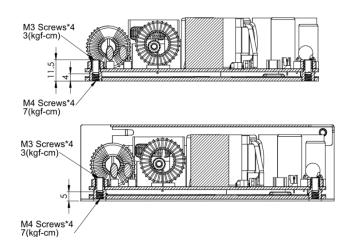



Figure 2. Output Voltage Ripple and Noise Measurement Set-Up

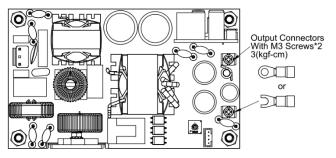
7.4 Installation Instruction


The CFM300S & CFM300SXXXC series has four 4mm diameter mounting holes. There are three type installations for CFM300S & CFM300SXXXC. Please use the mounting holes as follows:

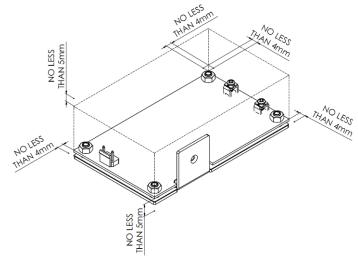
Insert the spacer (4mm diameter max.) of 8mm height or more to mount the unit. The vibration specification applies when the unit is mounted on 8mm spacers

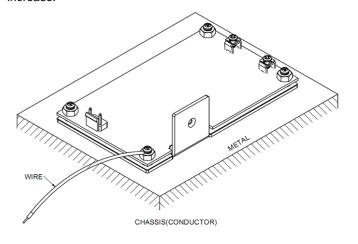


Application Note V12 August 2020



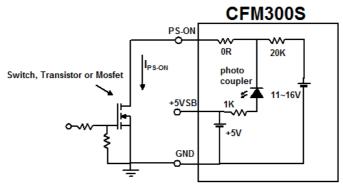
The torque of CFM300S & CFM300SXXXC as follows:


M4 Flat Screw


The torque of output connectors are 3kgf-cm and the connectors mate with round or Y terminal .The maximum outer diameter of the terminals are 6.75mm and the maximum inner diameter are 3.9mm. When locking the round terminal or Y terminal to output connectors, the terminals should not touch other parts to avoid short.

Please allow 4mm side clearance from the components and all side of the PCB. Allow 5mm clearance above the highest parts on the PCB. Be especially careful to allow 8mm between the solder side of the PCB and the mounting surface. If the clearances are not sufficient, the specifications for isolation and withstand will not be valid.

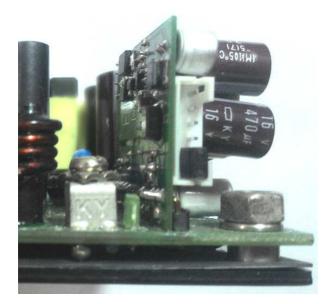
FG should be connected to the earth (ground) terminal of the apparatus. If not, the conducted noise and output noise will increase.

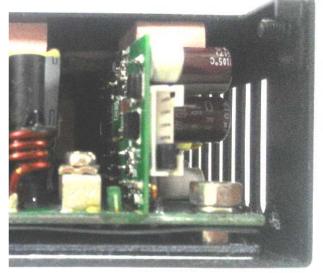


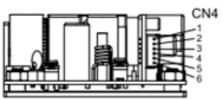
Application Note V12 August 2020

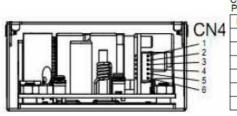
7.5. PS On/Off Remote Control

A PS On/Off remote control is provided in CN4. The PS-ON diagram and control function is shown as follow.




Power On: $V_{PS-ON} < = 2V$, $I_{PS-ON} > = 2mA$


(PS-ON and GND short, I_{PS-ON} =4.5 mA typical)

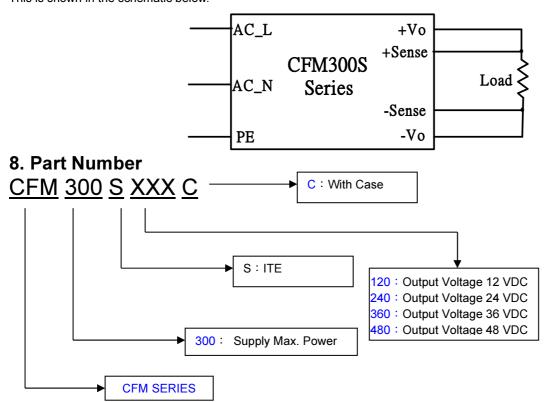

Power Off: Open circuit, V_{PS-ON} =11~16V

When the PS On/Off remote control function is not used, connect a short circuit between the PS-ON control and the signal GND

CN4: PIN CONNECTION						
14	Pin	Function				
14	1	FAN Output-				
	2	FAN Output+				
	3	GND				
	4	+5VSB				
	5	GND				
	6	PS-ON				

Application Note V12 August 2020

7.6. Output Remote Sensing


The CFM300S SERIES converter has the capability to remotely sense both lines of its output. This feature moves the effective output voltage regulation point from the output of the unit to the point of connection of the remote sense pins. This feature automatically adjusts the real output voltage of the CFM300S series in order to compensate for voltage drops in distribution and maintain a regulated voltage at the point of load. The remote-sense voltage range is:

 $[(+V_{out}) - (-V_{out})] - [(+Sense) - (-Sense)] \le 5\%$ of $V_{o_nominal}$

If the remote sense feature is not to be used, the sense pins should be connected locally. The +Sense pin should be connected to the +Vout pin at the module and the -Sense pin should be connected to

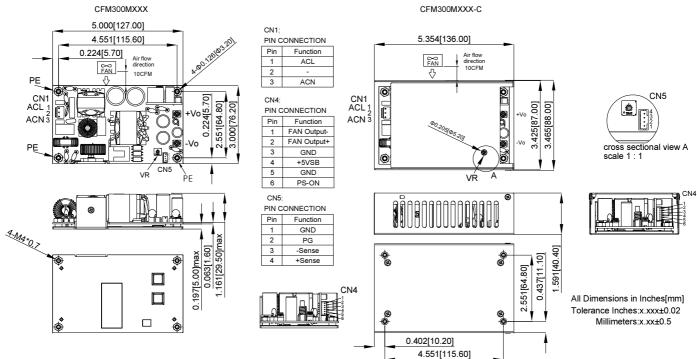
the -Vout pin at the module. A Remote Sensing is provided in CN4

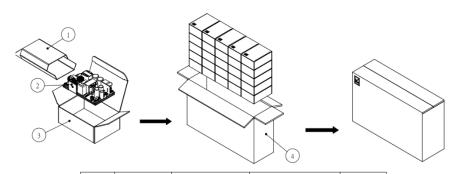
This is shown in the schematic below.

Application Note V12 August 2020

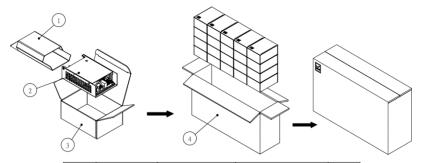
9. Mechanical Outline Diagrams and Packing Information

9.1. Mechanical Outline Diagrams




Figure 3. CFM300S series Mechanical Outline Diagram

Application Note V12 August 2020


9.2. Packing Information

The packing information for CFM300 SERIES is showing as follows:

ITEM	PART NO.	NAME	OUTSIDE DIM	PCS
1	G64F00005	Anti-static bubble bags	(110+60)*165mm	25
2		CFM300M/S	127*76. 2*35mm	25
3	G64205245	Carton	140*100*55mm	25
4	G64112330	Carton box	525*155*300mm	1

CFM300M/S 25PCS a box, including the total weight of package material about 11Kg

ITEM	PART NO.	NAME	OUTSIDE DIM	PCS
1	G64F00007	Anti-static bubble bags	(230+80)*150mm	20
2		CFM300M-C/S-C	136*87*40.4mm	20
3	G64205247	Carton	145*105*65mm	20
4	G64112331	Carton box	550*160*285mm	1

CFM300M-C/S-C 20PCS a box, including the total weight of package material about 12Kg

Headquarters:

14F, No.306, Sec.4, Hsin Yi Rd.

Taipei, Taiwan Tel: 886-2-27086210 Fax: 886-2-27029852

E-mail: sales@cincon.com.tw Web Site: https://www.cincon.com

CINCON ELECTRONICS CO., LTD.

Factory:

No. 8-1, Fu Kung Rd. Fu Hsing Industrial Park Fu Hsing Hsiang, Chang Hua Hsien, Taiwan

Tel: 886-4-7690261 Fax: 886-4-7698031

Cincon North America:

1655 Mesa Verde Ave. Ste 180 Ventura, CA 93003

Tel: 805-639-3350 Fax: 805-639-4101 E-mail: info@cincon.com