

ISOLATED DC-DC Converter EC5BW SERIES APPLICATION NOTE

Approved By:

Department	Approved By	Checked By	Written By
Research and Development Department			James
Quality Assurance Department			

Application Note V10 May 2011

Content

1. INTRODUCTION	3
2. DC-DC CONVERTER FEATURES	3
3. ELECTRICAL BLOCK DIAGRAM	3
4. TECHNICAL SPECIFICATIONS	5
5. MAIN FEATURES AND FUNCTIONS	8
5.1 Operating Temperature Range	8
5.2 Remote ON/OFF (Option)	8
5.3 UVLO (Under Voltage Lock Out)	8
5.4 Over Current Protection	8
5.5 Over Voltage Protection	8
6. APPLICATIONS	8
6.1 Recommended Layout PCB Footprints and Soldering Information	8
6.2 Power De-Rating Curves for EC5BW Series	9
6.3 Efficiency vs. Load Curves	10
6.4 Input Capacitance at the Power Module	13
6.5 Test Set-Up	13
6.6 Output Voltage Adjustment (Option)	13
6.7 Output Ripple and Noise Measurement	14
6.8 Output Capacitance	14
7. SAFETY & EMC	15
7.1 Input Fusing and Safety Considerations.	15
7.2 EMC Considerations	15
8. PART NUMBER	18
9 MECHANICAL SPECIFICATIONS	18

Application Note V10 May 2011

1. Introduction

The EC5BW series offer 15 watts of output power in a 2.00x1.00x0.4 inches copper packages. The EC5BW series has a 4:1 wide input voltage range of 9-36 and 18-75VDC, and provides a precisely regulated output. This series has many features including high efficiency. 1500VDC of isolation, meets EN55022 class A and allows an ambient operating temperature range of -40℃ to 85℃ (de-rating above 78 ℃). The modules are fully protected against input UVLO (under voltage lock out), over-current, over-voltage protection continuous short circuit conditions. Furthermore, the option control functions include remote on/off (suffix "T" to the model number) and adjustable output voltage(suffix "A" to the model number). All models are very suitable for distributed power architectures, telecommunications, battery operated equipment and industrial applications.

2. DC-DC Converter Features

- * 15W Isolated Output
- * Efficiency to 88%
- * 4:1 INPUT RANGE
- * Regulated Outputs
- * Fixed Switching Frequency
- * Input under-voltage Protection
- * Over Current Protection
- * Remote ON/OFF (Option)
- * Continuous Short Circuit Protection
- * Without Tantalum Capacitor inside
- * Conductive EMI Meet EN55022 Class A

3. Electrical Block Diagram

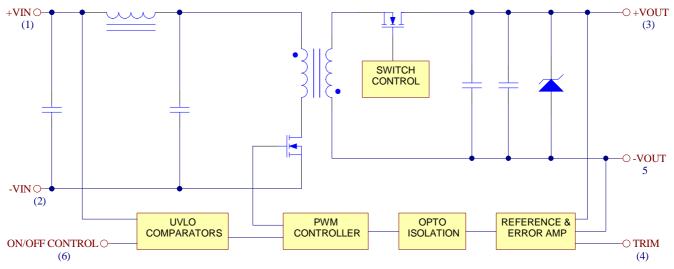


Figure1 Electrical Block Diagram of XXS33 and XXS05

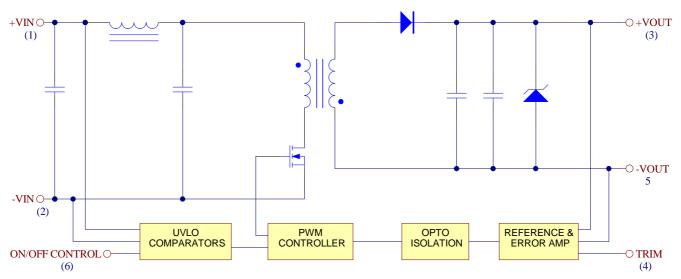


Figure 2 Electrical Block Diagram of XXS12 and XXS15

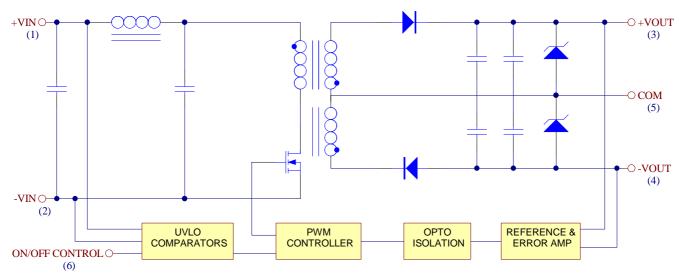


Figure3 Electrical Block Diagram of dual output module

4. Technical Specifications

(All specifications are typical at nominal input, full load at 25°C unless otherwise noted.)

ABSOLUTE MAXIMUM RATI		1_		_		
PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
Input Voltage						
Continuous		24Vin	9	24	36	Vdc
		48Vin	18	48	75	
Transient	100ms	24Vin			50	Vdc
		48Vin			100	
Operating Ambient Temperature	Derating, Above 78°C	All	-40		+85	$^{\circ}\!\mathbb{C}$
Case Temperature		All			105	$^{\circ}\!\mathbb{C}$
Storage Temperature		All	-55		+125	$^{\circ}\!\mathbb{C}$
Input/Output Isolation Voltage	1 minute	All			1500	Vdc
INPUT CHARACTERISTICS						
Occupios Inc. (Mallana		24Vin	9	24	36	17.1.
Operating Input Voltage		48Vin	18	48	75	Vdc
Marriago um la mort Ocument	100% Load, Vin=9V	24Vin			2100	A
Maximum Input Current	100% Load, Vin=18V	48Vin			1000	mA
	·	24S33		60		
		24S05		70		
		24S12		30		
		24S15		30		
		24D05		30		
		24D12		30		
N. I. II. (O.)	Vin=Nominal input	24D15		30		
No-Load Input Current		48S33		40		mA
		48S05		40		
		48S12		20		
		48S15		20		
		48D05		20		
		48D12		20		
		48D15		20		
Off Converter Input Current	Shutdown input idle current	All		4	10	mA
Inrush Current (I ² t)	As per ETS300 132-2	All			0.1	A ² s
Input Reflected-Ripple Current	P-P thru 12uH inductor, 5Hz to 20MHz	All			30	mΑ
OUTPUT CHARACTERISTIC		-				
		Vo=3.3	3.2505	3.3	3.3495	
		Vo=5.0	4.925	5	5.075	
		Vo=12	11.82	12	12.18	
Output Voltage Set Point	Vin=Nominal Vin , Io=Io.max, Tc=25℃	Vo=15	14.775		15.225	Vdc
,		Vo=±5.0	4.925	5	5.075	
		Vo=±12	11.82	12	12.18	
		Vo=±15	14.775	15	15.225	<u></u>
Output Voltage Balance	Vin=nominal, Io=Io _{max} , Tc=25°C	Dual			±2.0	%
Output Voltage Regulation	<u>, </u>	· ·		1	L. L	
,		Single			±0.2	%
Load Regulation	Io= Full Load to min. Load	Dual			±1.0	%
		Single			±0.2	%
Line Regulation	Vin=High line to Low line Full Load	Dual			±0.5	%
Cross Regulation	Load cross variation 10%/100%	Dual			±5	// //////////////////////////////////
Temperature Coefficient	TC=-40°C to 85°C	Buui			±0.03	%/°C
	1. 5 .5 .5 .5 .5	1	1	1		, 5,

Application Note V10 May 2011

		1		T		
		Vo=3.3V Vo=5V			75	
Peak-to-Peak	Full Load,20MHz bandwidth 0.1uF	Vo=±5V				mV
rear-to-rear	Ceramic capacitor	Vo=15V				IIIV
		Vo=12V			100	
		Vo=±15V Vo=±12V				
		Vo=3.3V			4000	
		Vo=5V Vo=12V			3000 1250	
Operating Output Current Range		Vo=12V Vo=15V	0		1000	mA
		Vo=±5V	-		±1500	
		Vo=±12V			±625	
Output DC Compant Limit Incention	Output Valtage 000/ V	Vo=±15V	110	140	±500 160	0/
Output DC Current-Limit Inception	Output Voltage=90% V _{O, nominal}	Vo=3.3V	110	140	4000	%
		Vo=5.5V			3000	
		Vo=12V			1250	
Maximum Output Capacitance	Full load, Resistance	Vo=15V			1000	uF
		Vo=±5V			1500	
		Vo=±12V Vo=±15V			625 470	
DYNAMIC CHARACTERISTIC	<u> </u>	V0=±13V			470	
PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
Output Voltage Current Transient	NOTES and CONDITIONS	Device	IVIII 1.	Турісаі	IVIAX.	Offics
Step Change in Output Current	75% to 100% of lo.max				±5	%
Setting Time (within 1% Vo _{nominal})	di/dt=0.1A/us				250	us
Turn-On Delay and Rise Time				l	l	
Turn-On Delay Time, From On/Off Control	Von/off to 10%Vo,set	All		10		ms
Turn-On Delay Time, From Input	Vin,min. to 10%Vo,set	All		10		ms
Output Voltage Rise Time	10%Vo,set to 90%Vo,set	All		10		ms
EFFICIENCY						
		24S33		87		
		24S05		87		
		24\$12		87		
		24S15		88		
		24D05		85		
		24D12 24D15		87 88		
100% Load	Vin=Nominal Vin, Io=Io _{max} , Tc=25℃	48S33		88		%
		48S05		88		
		48S12		87		
		48S15		87		
		48D05		85		
		48D12		87		
		48D15		87		
ISOLATION CHARACTERIST	CS					
Input to Output	TCS 1 minutes				1500	Vdc
Input to Output Isolation Resistance		All	1000		1500	МΩ
Input to Output Isolation Resistance Isolation Capacitance	1 minutes	All All	1000	1000	1500	
Input to Output Isolation Resistance Isolation Capacitance FEATURE CHARACTERISTIC	1 minutes		1000		1500	MΩ pF
Input to Output Isolation Resistance Isolation Capacitance FEATURE CHARACTERISTIC Switching Frequency	1 minutes S		1000	1000	1500	МΩ
Input to Output Isolation Resistance Isolation Capacitance FEATURE CHARACTERISTIC Switching Frequency ON/OFF Control ,Positive Remote Or	1 minutes S /Off logic (-"T" version)	All	1000			MΩ pF KHz
Input to Output Isolation Resistance Isolation Capacitance FEATURE CHARACTERISTIC Switching Frequency	1 minutes S		1000 3.5 or		1500 1.2 75	MΩ pF

			Open Circuit			
ON/OFF Current	Ion/off at Von/off=0.0V		Oncar	0.3	1	mA
Leakage Current	Logic High, Von/off=15V				30	uA
Off Converter Input Current	Shutdown input idle current			4	10	mΑ
Output Voltage Trim Range (-"A" version)	Pout=max rated power	XXSXX	-10		+10	%
Output Over Voltage Protection	Zener or TVS Clamp	Vo=3.3V Vo=5.0V Vo=12V Vo=15V Vo=±5.0V Vo=±12V Vo=±15V		3.9 6.2 15 18 ±6.2 ±15 ±18		Vdc
GENERAL SPECIFICATION	S					
MTBF	lo=100%of lo.max;Ta=25°C per MIL-HDBK-217F			TBD		M hours
Weight				35		grams

Application Note V10 May 2011

5. Main Features and Functions

5.1 Operating Temperature Range

The EC5BW series converters can be operated by a wide ambient temperature range from $-40^{\circ}\mathbb{C}$ to $85^{\circ}\mathbb{C}$ (de-rating above $78^{\circ}\mathbb{C}$). The standard model has a Copper case and case temperature can not over $105^{\circ}\mathbb{C}$ at normal operating.

5.2 Remote ON/OFF (Option)

The EC5BW series model number of suffix"T" has this option, It allows the user to switch the module on and off electronically with the remote on/off feature. All models are available in "positive logic" versions. The converter turns on if the remote ON/OFF pin is high (>3.5Vdc or open circuit). Setting the pin low (<1.2Vdc) will turn the converter off. The signal level of the remote on/off input is defined with respect to ground. If not using the remote on/off pin, leave the pin open (converter will be on).

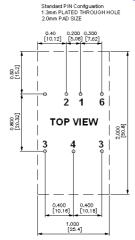
5.3 UVLO (Under Voltage Lock Out)

Input under voltage lockout is standard on the EC5BW unit. The unit will shut down when the input voltage drops below a threshold, and the unit will operate when the input voltage goes above the upper threshold.

5.4 Over Current Protection

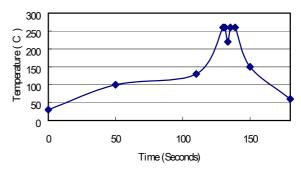
All models have internal over current and continuous short circuit protection. The unit operates normally once the fault condition is removed. At the point of current limit inception, the converter will go into hiccup mode protection.

5.5 Over Voltage Protection


The over-voltage protection consists of a zener diode to limiting the out voltage.

6. Applications

6.1 Recommended Layout PCB Footprints and Soldering Information


The system designer or the end user must ensure that other components and metal in the vicinity of the converter meet the spacing requirements to which the system is approved. Low resistance and low inductance PCB layout traces are the norm and should be used

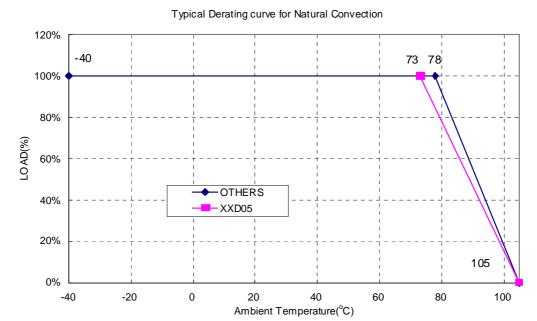
where possible. Due consideration must also be given to proper low impedance tracks between power module, input and output grounds. The recommended footprints and soldering profiles are shown as Figure 4.

Note: Dimensions are in inches (millimeters)

Lead Free Wave Soldering Profile

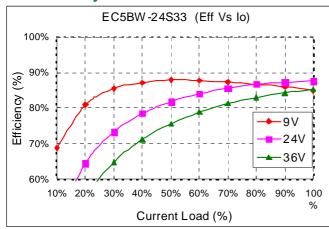
Note:

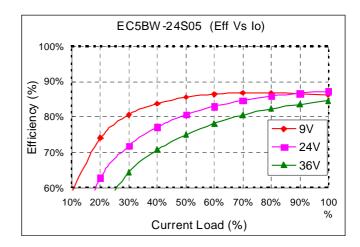
- Soldering Materials: Sn/Cu/Ni
- 2. Ramp up rate during preheat: 1.4 $^{\circ}$ C/Sec (From 50 $^{\circ}$ C to 100 $^{\circ}$ C)
- 3. Soaking temperature: 0.5 $^{\circ}$ C/Sec (From 100 $^{\circ}$ C to 130 $^{\circ}$ C), 60±20 seconds
- 4. Peak temperature: 260°C, above 250°C 3~6 Seconds
- 5. Ramp up rate during cooling: -10.0 $^{\circ}\text{C/Sec}$ (From 260 $^{\circ}\text{C}$ to 150 $^{\circ}\text{C}$)

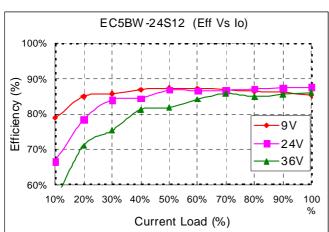

Figure 4 Recommended PCB Layout Footprints and Wave Soldering Profiles for SB packages

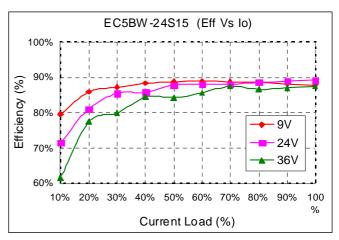
6.2 Power De-Rating Curves for EC5BW Series

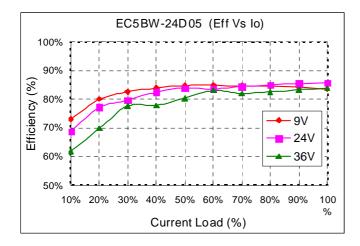
Operating Ambient temperature Range : -40° C ~ 85° C (derating above 78° C).

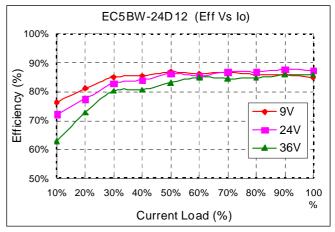

Maximum case temperature under any operating condition should not exceed 105° C.

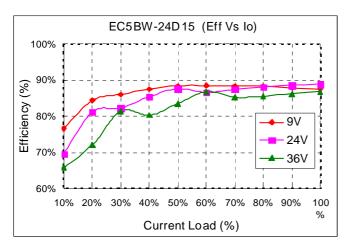


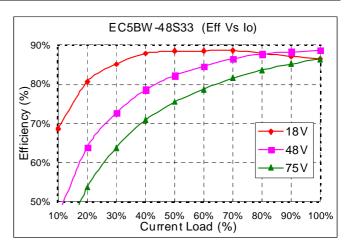


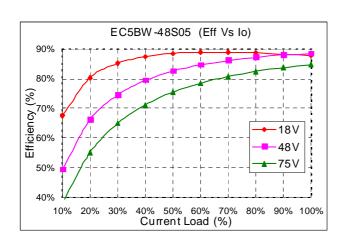

Application Note V10 May 2011

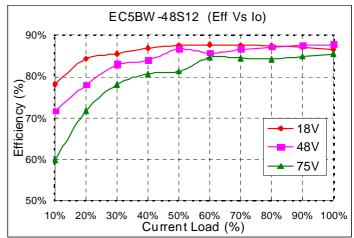

6.3 Efficiency vs. Load Curves

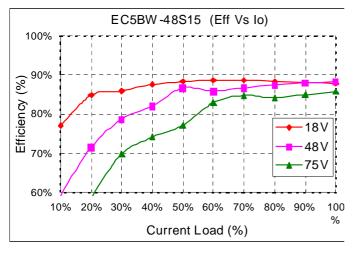


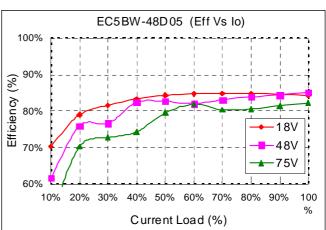


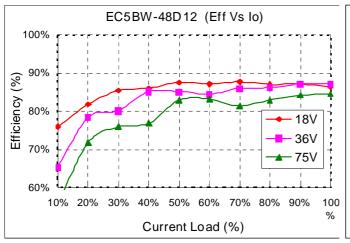


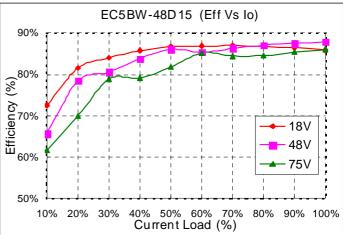


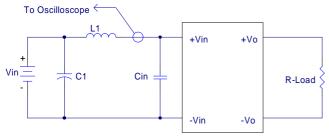



Application Note V10 May 2011









Application Note V10 May 2011

6.4 Input Capacitance at the Power Module

The converters must be connected to low AC source impedance. To avoid problems with loop stability source inductance should be low. Also, the input capacitors (Cin) should be placed close to the converter input pins to de-couple distribution inductance. However, the external input capacitors are chosen for suitable ripple handling capability. Low ESR capacitors are good choice. Circuit as shown in Figure5 represents typical measurement methods for reflected ripple current. C1 and L1 simulate a typical DC source impedance. The input reflected-ripple current is measured by current probe to oscilloscope with a simulated.

source Inductance (L1).

L1: 12uH C1: None

Cin: 33uF ESR<0.7ohm @100KHz

Figure5 Input Reflected-Ripple Test Setup

6.5 Test Set-Up

The basic test set-up to measure parameters such as efficiency and load regulation is shown in Figure6. When testing the modules under any transient conditions please ensure that the transient response of the source is sufficient to power the equipment under test. We can calculate the

- Efficiency
- · Load regulation and line regulation.

The value of efficiency is defined as:

$$\eta = \frac{Vo \times Io}{V_{IN} \times I_{IN}} \times 100\%$$

Where

 V_O is output voltage, I_O is output current, V_{IN} is input voltage, I_{IN} is input current.

The value of load regulation is defined as:

$$Load.reg = \frac{V_{FL} - V_{NL}}{V_{NL}} \times 100\%$$

Where

V_{FL} is the output voltage at full load

V_{NL} is the output voltage at 10% load

The value of line regulation is defined as:

$$Line.reg = \frac{V_{HL} - V_{LL}}{V_{LL}} \times 100\%$$

Where

V_{HL} is the output voltage of maximum input voltage at full load.

V_{LL} is the output voltage of minimum input voltage at full load.

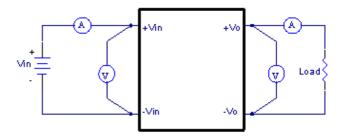


Figure 6 EC5BW Series Test Setup

6.6 Output Voltage Adjustment (Option)

Suffix "A" to the model number with output voltage adjustable. In order to trim the voltage up or down one needs to connect the trim resistor either between the trim pin and -Vo for trim-up and between trim pin and +Vo for trim-down. The output voltage trim range is ±10%. This is shown in Figures 7 and 8:

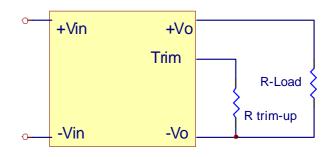


Figure7 Trim-up Voltage Setup

Application Note V10 May 2011

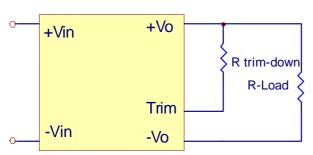


Figure8 Trim-down Voltage Setup

1. The value of Rtrim-up defined as:

$$R_{trim-up} = \left(\frac{V_r \times R1 \times (R2 + R3)}{(V_O - V_{O,nom}) \times R2}\right) - Rt \text{ (K}\Omega)$$

Where

R $_{\text{trim-up}}$ is the external resistor in Kohm. $V_{O, \text{nom}}$ is the nominal output voltage. V_{O} is the desired output voltage. R1, Rt, R2, R3 and Vr are internal to the unit and are defined in Table 1.

Table 1 – Trim up and Trim down Resistor Values

rable i Tilli ap ana Tilli de Mi Recicio Value						
Model Number	Output	R1	R2	R3	Rt	Vr
Model Number	Voltage(V)	(ΚΩ)	(ΚΩ)	(ΚΩ)	(ΚΩ)	(V)
EC5BW24S33	3.3	2.74	1.8	0.27	9.1	1.24
EC5BW48S33	3.3	2.74	1.8	0.27	9.1	1.24
EC5BW24S05	. 0	0.00	0.00	0	0.0	0.5
EC5BW48S05	5.0	2.32	2.32	0	8.2	2.5
EC5BW24S12	10.0	0	2.4	2.32	22	2.5
EC5BW48S12	12.0	6.8	2.4	2.32	22	2.5
EC5BW24S15	45.0	0.00	0.4	2.0	07	0.5
EC5BW48S15	15.0	8.06	2.4	3.9	27	2.5

For example, to trim-up the output voltage of 5.0V module (EC5BW-24S05) by 10% to 5.5V, R trim-up is calculated as follows:

$$V_o - V_{o, nom} = 5.5 - 5.0 = 0.5V$$

 $R1 = 2.32 \text{ K}\Omega$

 $R2 = 2.32 \text{ K}\Omega$

 $R3 = 0 K\Omega$

Rt = 8.2 $K\Omega$,

Vr= 2.5 V

$$R_{trim-up} = (\frac{2.5 \times 2.32 \times (2.32 + 0)}{0.5 \times 2.32}) - 8.2 = 3.4(K\Omega)$$

2. The value of R trim-down defined as:

$$R_{trim-down} = R1 \times (\frac{Vr \times R1}{(V_{o,nom} - V_{o}) \times R2} - 1) - Rt \text{ (K}\Omega)$$

Where

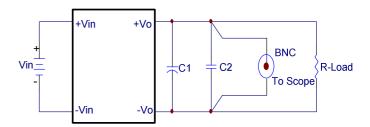
R $_{\text{trim-down}}$ is the external resistor in Kohm. $V_{O, \text{nom}}$ is the nominal output voltage. V_{O} is the desired output voltage. R1, Rt, R2, R3 and Vr are internal to the unit and are defined in Table 1

For example, to trim-down the output voltage of 5.0V module (EC5BW-12S05) by 10% to 4.5V, R trim-down is calculated as follows:

$$V_{O,nom} - V_{O} = 5.0 - 4.5 = 0.5V_{O}$$

 $R1 = 2.32 \text{ K}\Omega$

 $R2 = 2.32 \text{ K}\Omega$


 $R3 = 0 \text{ K}\Omega$ Rt = 8.2 K Ω

\/r_ 2.5 \/

 $R_{trim-down} = 2.32 \times (\frac{(2.5 \times 2.32)}{0.5 \times 2.32} - 1) - 8.2 = 1.08 \text{ (K}\Omega)$

6.7 Output Ripple and Noise Measurement

The test set-up for noise and ripple measurements is shown in Figure9. A coaxial cable was used to prevent impedance mismatch reflections disturbing the noise readings at higher frequencies. Measurements are taken with output appropriately loaded and all ripple/noise specifications are from D.C. to 20MHz Band Width.

Note: C1: None

C2: 0.1uF Ceramic capacitor

Figure9 Output Voltage Ripple and Noise Measurement Set-Up

6.8 Output Capacitance

The EC5BW series converters provide unconditional stability with or without external capacitors. For good transient response low ESR output capacitors should be located close to the point of load. These series converters are designed to work with load capacitance to see technical specifications.

Application Note V10 May 2011

7. Safety & EMC

7.1 Input Fusing and Safety Considerations.

The EC5BW series converters have not an internal fuse. However, to achieve maximum safety and system protection, always use an input line fuse. We recommended a time delay fuse 4A for 24Vin models and 2A for 48Vin modules. Figure 10 circuit is recommended by a Transient Voltage Suppressor diode across the input terminal to protect the unit against surge or spike voltage and input reverse voltage.

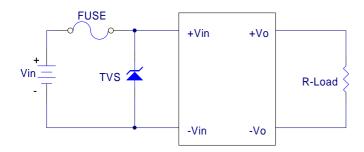
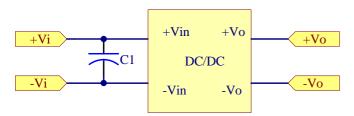



Figure 10 Input Protection

7.2 EMC Considerations

EMI Test standard: EN55022 Class A and B Conducted Emission Test Condition: Input Voltage: Nominal, Output Load: Full Load

(1) EMI and conducted noise meet EN55022 Class A:

Figur11 Connection circuit for conducted EMI testing

Note: To meet EN55022 Class A without capacitor to the input pin.

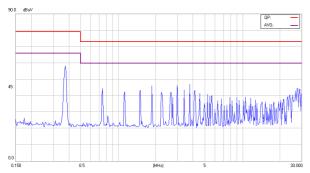


Figure 12 Conducted Class A of EC5BW-24S33

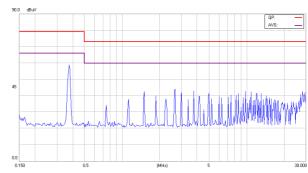
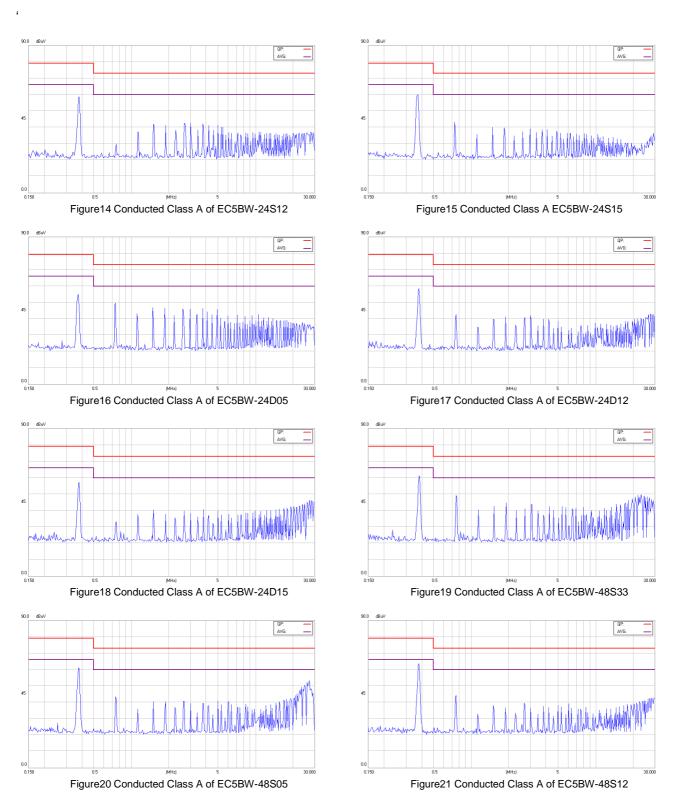



Figure 13 Conducted Class A of EC5BW-24S05

Application Note V10 May 2011

Application Note V10 May 2011

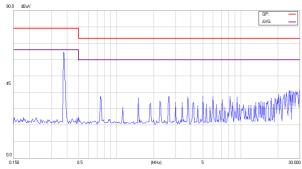


Figure 22 Conducted Class A of EC5BW-48S15

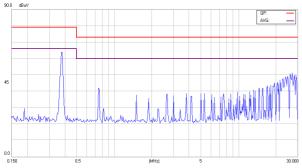


Figure24 Conducted Class A of EC5BW-48D12

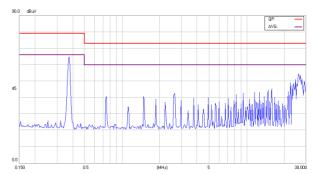
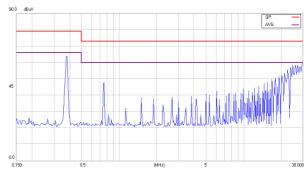
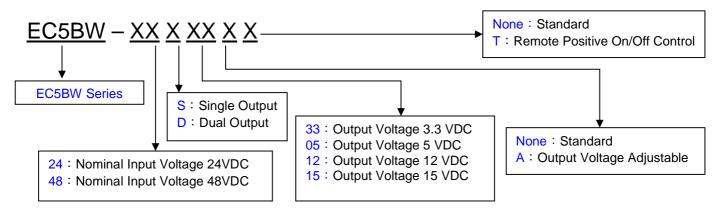
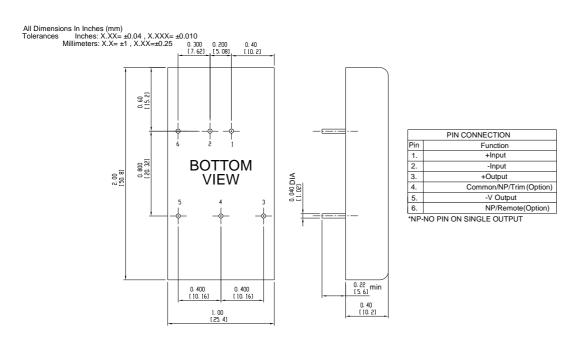


Figure 23 Conducted Class A of EC5BW-48D05




Figure25 Conducted Class A of EC5BW-48D15

(2) EMI and conducted noise meet EN55022 Class B:



Application Note V10 May 2011

8. Part Number

9. Mechanical Specifications

CINCON ELECTRONICS CO., LTD.

Headquarter Office:

14F, No.306, Sec.4, Hsin Yi Rd.,

Taipei, Taiwan Tel: 886-2-27086210 Fax: 886-2-27029852

E-mail: sales@cincon.com.tw
Web Site: http://www.cincon.com

Factory:

No. 8-1, Fu Kong Rd., Fu Hsing Industrial Park Fu Hsing Hsiang, ChangHua Hsien, Taiwan

Tel: 886-4-7690261 Fax: 886-4-7698031

Cincon American Office:

1655 Mesa Verde Ave, Ste 180,

Ventura, CA 93003 Tel: 805-639-3350 Fax: 805-639-4101 E-mail: info@cincon.com